Exos sur Activité Mesure de quantités de matière :

Objectifs : Déterminer la quantité de matière (exprimée en mole) contenue dans un échantillon. Préparer un échantillon, contenant une quantité de matière fixée.

Recherche personnelle : (réalisé à la maison) documents nécessaires : classification périodique.

1. A l'aide de la classification périodique : trouver la masse molaire atomique de chacune des espèces chimiques figurant dans le tableau ci-dessous :

Espèce chimique	Plomb	Cuivre	Sodium	Chlore	Soufre	Carbone	Hydrogène	Oxygène	Calcium
Masse molaire									
M (g.mol ⁻¹)									

2. Calculer la masse molaire des espèces figurant dans le tableau ci-dessous :

Échantillon	Chlorure de sodium	Carbonate de Calcium	Sucre (saccharose)
	NaCl	CaCO ₃	C ₁₂ H ₂₂ O ₁₁
Masse molaire M (g.mol ⁻¹)		-	12 22

- 3. Comment peut-on mesurer la masse volumique ρ et 1a densité **d** d'une espèce chimique (solide ou liquide) par rapport à l'eau ? (éventuellement, donnez les définitions respectives).
- 4. Donner la relation qui lie la quantité de matière **n** (mol) d'une espèce chimique contenue dans un échantillon de masse **m** (g), à la masse molaire **M** (g/mol)?
- 5. Parmi la verrerie suivante : classer les contenants suivants par précision croissante : bécher, éprouvette de 50 mL, pipette graduée, verre à pied :

Manipulation : comment peut-on mesurer une quantité de matière ?

Matériel : verrerie citée plus haut et balance.

Mode opératoire

1. Déterminer une quantité de matière :

Déterminer une quantité de matière présente dans un morceau de sucre (saccharose) de masse = 5,00 g mesurée à l'aide d'une balance électronique. Attention à bien faire écrire le nombre de chiffres significatifs pour la masse selon la précision de la balance et à préciser l'unité.

- Calculer la quantité de matière correspondante (en mol).
- 2. Comment préparer une quantité de matière :

Solide (NaCl): Préparer 0,10 mol de chlorure de sodium, en justifiant la démarche.

Liquide (eau): A vous de jouer: préparer la quantité de matière **n** (mol) d'eau parmi les valeurs suivantes: 0,5 mol; 1 mol; 2,0 mol; 3,0 mol.

Selon la précision demandée, choisir la verrerie appropriée (burette, éprouvette...)

- Expliquer les étapes de cette préparation.

Donnée : masse volumique de l'eau : $\rho_{eau} = 1,00 \text{ kg.L}^{-1}$

Autour des grandeurs : masse molaire moléculaire, M

Compléter les tableaux ci-dessous :

1. Solides

Espèce chimique	Nom	Glace	Vitamine C (acide ascorbique)	Acide stéarique (constituant des bougies)	
	Formule brute	H ₂ O	C ₆ H ₈ O ₆	C ₁₈ H ₃₆ O ₂	
Masse molaire moléculaire M (g.mol ⁻¹)					
Masse volumique ρ (g.mL ⁻¹)		0,917		0,941	
Densité d			1,65		
Masse m (g)			500 mg		
Quantité de matière n (mol)		1,35			
Volume V(mL)				120	

2. Liquides (Sauf indications contraires, les masses volumiques sont données pour des corps à la température de 20 °C, sous la pression atmosphérique normale de 1 013 hPa).

Espèce chimique	Nom	Ethanol ou alcool éthylique	Octane (constituant de l'essence)	Styrène (conduit au polystyrène qui est une matière plastique)	
	Formule brute	C ₂ H ₆ O	C ₈ H ₁₈	C ₈ H ₈	
	re moléculaire mol ⁻¹)				
Masse volumique ρ (g.mL ⁻¹)		0,789		0,906	
Densité d			0,703		
Masse m (g)				28 g	
Quantité de matière n (mol)			3,2		
Volume V (mL)		43,2			